November 19, 2014

OECD International Symposium in commemoration of the 50th Anniversary of Japan's Accession

Enhancing Japan's STI

Yuko Harayama

Executive Member Council for Science, Technology and Innovation Cabinet Office

A SNAPSHOT OF JAPAN'S STI

R&D Expenditures

Transition of overall S&T Budget

Strength in Basic Research

of Nobel laureates in natural sciences since 1901 (since 2000)

Japanese Nobel laureates in natural sciences

Rank	Country	Total
1(1)	US	250(58)
2(3)	UK	78(10)
3(4)	Germany	69(7)
4(5)	France	31(6)
5(2)	Japan	17(12)
6(8)	Sweden	16(1)
7(8)	Swiss	15(1)
8(6)	Russia	14(4)
8(8)	Netherlands	14(1)
10(8)	Canada	9(1)
10(8)	Austria	9(1)
10(13)	Denmark	9(0)
13(13)	Italy	7(0)
14(7)	Australia	6(2)

	year	Name	prize
1	2014	Isamu Akasaki	Physics
2	2014	Hiroshi Amano	Physics
3	2012	Shinya Yamanaka	Physiology / Medicine
4	2010	Akira Suzuki	Chemistry
5	2010	Ei-ichi Negishi	Chemistry
6	2008	Osamu Shimomura	Chemistry
7	2008	Makoto Kobayashi	Physics
8	2008	Toshihide Maskawa	Physics
9	2002	Masatoshi Koshiba	Physics
10	2002	Koichi Tanaka	Chemistry
11	2001	Ryōji Noyori	Chemistry
12	2000	Hideki Shirakawa	Chemistry
13	1987	Susumu Tonegawa	Physiology / Medicine
14	1981	Kenichi Fukui	Chemistry
15	1973	Leo Esaki	Physics
16	1965	Sin-Itiro Tomonaga	Physics
17	1949	Hideki Yukawa	Physics

Strength in Basic Research

Nobel Laureates in Physics 2014

The award honors Dr.Akasaki, Dr.Amano and Dr.Nakamura for their contribution to developing the world's first blue light emitting diodes(LEDs).

Dr. Isamu Akasaki Professor Meijo University

Dr. Hiroshi Amano Professor Nagoya University

Dr. Shuji Nakamura University of California, Santa Barbara

Innovation Power

Rank	GII	GCI	TRGI
1	Switzerland	Switzerland	United States(45)
2	United Kingdom	Singapore	Japan(28)
3	Sweden	United States	France(12)
4	Finland	Finland	Switzerland(4)
5	Netherlands	Germany	Germany(3)
6	United States	Japan	Korea(3)
7	Singapore	Hong Kong	Sweden(2)
8	Denmark	Netherlands	Canada(1)
9	Luxembourg	United Kingdom	Netherlands(1)
10	Hong Kong	Sweden	Taiwan(1)
Rank of Japan	21	6	2

GII: Global Innovation Index 2014 by Cornell University, INSEAD, and WIPO (2014) GCI: Global Competitiveness Index 2014-2015, World Economic Forum (2014) TRGI: Thomson Reuters 2013 Top 100 Global Innovators, Thomson Reuters (2013) # of companies shown in parenthesis

Innovation potential can be measured in various ways with different indices combined but Japan's innovation potential is not highly evaluated in general.

Human Resources in S&T (1) (Mobility)

research is over 30 days

Human Resources in S&T (2) (Gender)

9

ORGANIZATIONAL AND POLICY FRAMEWORK

Administrative Organization for Promoting STI

Council for Science, Technology and Innovation (CSTI)

From CSTP to CSTI

Act on the Establishment of the Cabinet Office was amended during the last Diet session. The amendment, which brings about the following changes, came into force as of May 19, 2014.

- Former Council for Science and Technology Policy (CSTP) is now Council for Science, Technology and Innovation (CSTI).
- New mandate is added which is to deal with the issues related to the development of environment to promote innovation in addition to "the promotion of science and technology".
- Form of office of executive members of the Council is extended from 2 years to 3 years.

Council for Science, Technology and Innovation (CSTI)

Executive Members

Chairperson

Cabinet Members

Shunichi YAMAGUCHI Minister of State for Science and Technology Policy

Hakubun SHIMOMURA Minister of Education, Culture, Sports, Science and Technology

Sanae TAKAICHI

Minister for Internal Affairs and Communications

Yoichi MIYAZAWA

Minister of Economy, Trade and Industry

* Relevant ministers are appointed ad-hoc members when needed to attend plenary session meetings of CSTI

Dr. Kazuo KYUMA Former Executive Adviser, Mitsubishi Electric Corp. (Permanent Position)

Yoshihide SUGA

Chief Cabinet Secretary

Taro ASO

Minister of Finance

Dr. Yuko HARAYAMA

Professor Emeritus, Tohoku University (Permanent Position)

Mr. Takeshi UCHIYAMADA Dr. Toshio HIRANO

Chairman of the board, Tovota Motor Corp.

President, Osaka University

Head of an Affiliated Organization

Dr. Motoko KOTANI Professor, Tohoku University

Mr. Hiroaki NAKANISHIDr. Kazuhito HASHIMOTO Dr. Takashi ONISHI

President, Hitachi, Ltd.

Professor, University of Tokyo

President, Science Council of Japan

Our tasks

- Actions
 - "Comprehensive STI Strategy" (2014)
 - Implementation (budget 2015)
 - Preparation of the 5th S&T Basic Plan (2016-2020)

Challenge: Japan as a "Most Innovation-friendly country"

Putting into practice the "OECD spirit"

- Benchmarking
- Evidence-based policy making
- Horizontality (cross-ministerial)
- Measurement
- "Better policies for better lives"

Our counterparts

STI POLICY UNDER ABE ADMINISTRATION

Comprehensive STI Strategy

Basis

• Innovation as a driver of economic growth and social change

3 perspectives to promote STI

- Acting "smart",
- Implementing "system" thinking
- Think "global"

Comprehensive package of challenge-driven STI policies

• Including "Tokyo 2020 Olympic and Paralympic Games"

Actions for improving framework conditions for STI

Creating new policy instruments

- Cross-ministerial Strategic Innovation Promotion Program (SIP)
- Impulsing Paradigm Change through disruptive Technologies Program (ImPACT)

Improving STI Framework conditions

Reviewing institutional framework

- Status of national R&D corporations
 - Among incorporated administrative agencies (IAAs), a category for those conducting R&D has been created
 - A new system is being drafted to maximize the potential of IAAs in this category
- Infrastructures (with particular eyes on intangibles, including data infrastructure)
- Funding systems

Enhancing international collaborations

- Brain circulation
- > Experience sharing in policy making
- Forming forum to address common grand challenges

To start with

- Strengthening the bridging functions of AIST and NEDO
- Reforming Ph.D. programs

> Characteristics

- Strengthening Japan's competitive edge
- Cross-border: ministries, disciplines, sectors
- Regulatory reform as a component
 - ➡ Innovation accelerator

Policy innovation

- CSTI's direct engagement
 - Themes
 - Budget
 - Governance
- Program directors (PD) with large competencies
 - Designing and managing project
 - Coordinating related ministries and institutional actors
 - Bridging to business

Established for each project

Themes of SIP

Priority policy issues	Subjects	Description
Energy	Innovative combustion technology	Improving fuel efficiency of automobile engines
	Next-generation power electronics	Integrating new semiconductor materials into highly efficient power electronics system
	Structural Materials for Innovation (SM ⁴ I)	Developing ultra-strong and -light materials such as magnesium-, titanium-alloys and carbon fibers
	Energy carrier	Promoting R&D to contribute to the efficient and cost- effective technologies for utilizing hydrogen
	Next-generation technology for ocean resources exploration	Establishing technologies for efficiently exploring submarine hydrothermal polymetallic ore
Next- generation infrastructures	Automated Driving System	Developing new transportation system including technologies for avoidance accidents and alleviating congestion
	Infrastructure maintenance, renovation and management	Developing low-cost operation & maintenance system and long life materials for infrastructures
	Enhancement of societal resiliency against natural disasters	Developing technologies for observation, forecast and prediction of natural disasters
Local resources	Technologies for creating next- generation agriculture, forestry and fisheries	Realizing evolutionary high-yield and high-profit models by utilization of advanced IT etc
	Innovative design/manufacturing technologies	Establishing new styles of innovations arising from regions using new technologies such as Additive Manufacturing

Program Directors for SIP

Innovative combustion technology	Structural Materials for Innovation(SM ⁴ I)	Next-generation technology for ocean	Infrastructure maintenance,	Tech. for creating next- generation agriculture,
		resources exploration	renovation and management	forestry and fisheries
Masanori Sugiyama Toyota Motor Corp.	Teruo Kishi Univ. of Tokyo, NIMS	Tetsuro Urabe Univ. of Tokyo, JMEC	Yozo Fujino Yokohama National Univ.	Takeshi Nishio Hosei Univ.
Next-generation power electronics	Energy carrier	Automated Driving System	Enhancement of societal resiliency against natural disasters	Innovative design/manufacturing technologies
Tatsuo Ohmori Mitsubishi Electric Corp	Shigeru Muraki	Hiroyuki Watanabe	Masayoshi Nakashima	Naoya Sasaki Hitachi Itd
Theorem Electric Corp.	TORYO Gas CO., Ltu.	Tuyota Motor Corp.	Kyötö öffiv.	filtaciii, Ltu.

Example of SIP (1) Energy Carrier

- R&D on efficient and costeffective technologies to generate, transport, store and utilize hydrogen.
- Describe scenarios to create "Hydrogen Society" with related ministries(CAO, MEXT, METI, MLIT, FDMA), research institutes and private enterprises collaborating with each other.
- + CAO(Cabinet Office), MEXT(Ministry of Education, Culture, Sports, Science and Technology), METI(Ministry of Economy, Trade and Industry), MLIT(Ministry of Land, Infrastructure, Transport and Tourism), FDMA(Fire and Disaster Management Agency, Ministry of Internal Affairs and Communications)

Renewable Energies, etc.

Example of SIP (2) Next-generation technology for ocean resources exploration

Example of SIP (3) Infrastructure maintenance, renovation and management

Flow of Infrastructure Management and R&D on component technologies

Impace (Impulsing PAradigm Change through disruptive Technologies) Program

Characteristics

- Seeking the next generation of innovation
- Investing in high risk but high impact R&D
- ➡ Game changer in innovation

Policy innovation

- CSTI's direct engagement
 - Themes
 - Budget
 - Governance
- Program managers (PM) with large competencies
 - Bringing disruptive ideas
 - Designing and managing projects

Themes of ImPACT Program

- 1. Overcoming resource constraints and innovating Monozukuri power
 - Next century Japan's style value creation
- 2. Innovative energy-saving and eco-friendly society transforming our life style
 - Co-evolution with the earth
- 3. Highly functional society beyond information network society
 - Smart community connecting people and society
- 4. The most comfortable living environment in the advent of the aging society
 - Healthy and comfortable life for everyone
- 5. Controlling the effect of natural disasters and hazards and minimizing damage
 - Ensuring resilience for every Japanese citizen

Program Managers for ImPACT Program

ITO (U Tokyo) Resource constraints

GODA (U Tokyo) Resource constraints

SANKAI (Tsukuba) Comfortable living environment

MIYATA (Nagoya) Comfortable living environment

Resource constraints

YAGI (Canon) Comfortable living environment

SANO (Toshiba) Comfortable living environment

TADOKORO (Tohoku) Natural disasters

YAMAKAWA (NTT D) Comfortable living environment

SAHASI (Tohoku) Energy-saving & eco

FUJITA (Toshiba) Energy-saving & eco

YAMAMOTO (NII) Highly functional society

Example of ImPACT (1) Realization of ultimate eco-IT devices for long-time use without charging

<Overview of R&D Program>

The goal of this program is to develop technology for magnetic memory recording using voltage only, without current flow for reducing the power consumption of IT devices, and realization of an eco-society with no charging-stress.

<Key Points of Disruptive Innovation>

The base is the development of the ultimate highspeed large-capacity memory, where information is written by voltage, to significantly reduce power consumption during standby and operation.

<Expected Impact on Industry and Society>

Realization of mobile devices that stay without charging for a month, a safe and secure society with no-charging disaster-prevention sensors and emergency information access systems, and revival of national electronics industry.

charging for a month

Mobile device without
O Cleaning the outlets from continuously connected chargers

Remove the need for battery replacement for IT devices and sensors

Revival of Japan's industrial competitiveness through technological innovation in lost areas of DRAM, logic circuits, cloud systems, etc.

Example of ImPACT (2) Tough Robotics Challenge

< Overview of R&D Program>

The goal of this program is to develop key fundamental technologies for remote autonomous robots that can toughly complete missions under unknown changing disaster conditions.

<Key Points of Disruptive Innovation>

Technologies of active robustness, large-scale real-time information and bio-machine fusion will establish the remote autonomous robotics toughly operable under extreme disaster environments.

Active Robustness

Soft flexible systems **Redundant distributed cooperation full of wastefulness** Micro high-power actuators Discontinuous Design and planning tolerant of failures **Extreme Toughness Robust solutions** Accessibility •Sensing, Perception Tough and Estimation Recovery from Robotics Failures Environmental Compatibility Noninvasive animal interface **Fused human in loop Bio-machine Fusion**

Expected Impact on Industry and SocietyRobot application to disaster response, recovery and mitigation leads the world safety and security as well as commercialization and expansion of future advanced robot services outdoor.

Example of ImPACT (3) Actualize Energetic Life by visualizing and controlling brain information

< Overview of R&D Program>

Visualizing and controlling brain information will become a platform for manufacturing and service innovation, which include equipments controlled by thoughts, or support multilingual communication. Anyone can understand and train their own brains to actualize rich and energetic life which meet their own needs.

<Key Points of Disruptive Innovation>

We aim to develop lower cost and higher performance Brain information utilization technologies using brain big data and robotics neurofeedback (NF) having portable brain-machine interface (BMI) as a central technology.

<Expected Impact on Industry and Society>

The technology to be developed will help establish an innovation ecosystem including academia-industry partnerships and neuro ventures, supported by a brain information platform, to create the world's first brain information industry, and bring richness to the life.

Create brain information industries

Interdisciplinary Academic-Industry Partnership for Brain Neuro ventures Industry Corporation Utilization Technologies Open Cloud Platform for Brain Information

Preparation of the 5th S&T Basic Plan(1)

[Projected schedule]

2015	Oct.	 Follow-up of "The 4th S&T Basic Plan" approved by CSTI Consultation by the Prime Minister on the formulation of "The 5th S&T Basic Plan" to CSTI
	Nov.	Discussions start at "The Basic Plan Expert Panel" (meetings to be held on a monthly basis)
2016	Jun.	Interim Report by "The Basic Plan Expert Panel"
	Dec.	Recommendation of "The Draft 5 th S&T Basic Plan" by CSTI
2017	Mar.	Cabinet decision on "The 5 th S&T Basic Plan"

* Public consultation to take place at an appropriate time.

* Details to be further examined.

Preparation of the 5th S&T Basic Plan(2)

[Basic Thoughts]

- Context (2016-2020)
 - Time of drastic changes surrounding STI
 - Connectivity, Openness
 - Beyond existing borders, Co-(production)
 - Data-driven innovation
 - \rightarrow Unpredictable, Unforeseeable, Transformational
 - Increased global competition & cooperation
- > The key is preparedness
 - Flexible, adaptable and evolving innovation system!

[Directions]

- Consolidate "fundamentals"
- Encourage and prepare the ground for cross-border coproduction of knowledge
- Nurture creative and collaborative mindsets
 - Providing spaces for experience, challenge and learning
- Increase social tolerance vis-à-vis those who attempt to achieve a breakthrough

Looking forward to your

insights!